Тестер-анализатор сетей Ethernet Беркут-ЕТ

Руководство по тестированию ДДГМ.030.000.001 РЭ2 Редакция 12, 2022

НТЦ Метротек

Никакая часть настоящего документа не может быть воспроизведена, передана, преобразована, помещена в информационную систему или переведена на другой язык без письменного разрешения производителя. Производитель оставляет за собой право без дополнительного уведомления вносить изменения, не влияющие на работоспособность прибора, в аппаратную часть или программное обеспечение, а также в настоящее руководство по эксплуатации.

© НТЦ Метротек, 2022

Оглавление

1. Введение

Настоящее руководство содержит описания тестов, схемы подключения и сценарии тестирования для анализатора сетей Ethernet Беркут-ЕТ.

Дополнительная информация об устройстве приведена в руководствах, входящих в комплект поставки:

- «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Краткое руководство по эксплуатации»
- «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по структуре меню»
- «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удалённого управления»

Примечание. Перед началом работы с прибором рекомендуется изучить краткое руководство по эксплуатации.

2. Условные обозначения и сокращения

В тексте руководства без расшифровки будут применяться сокращения, приведённые в таблице ниже.

Таблица 2.1. Сокращения

Сокращение	Комментарий
DUT	Device under test (Тестируемое устройство)
NUT	Network under test (Тестируемая сеть)
SLA	Service Level Agreement (Соглашение об уровне обслуживания)
QoS	Quality of Service (Качество обслуживания)
ПК	Персональный компьютер
ПО	Программное обеспечение

3. Инструменты

3.1. ІР инструменты

Тесты, описанные в данном разделе, необходимы при проведении анализа в сетях, устройства, осуществляющие коммутацию содержащих И маршрутизацию передаваемых данных. С помощью реализованных в приборе TCP/IP тестов можно обнаружить проблемы, связанные с конфигурацией сети, убедиться в связности канала между eë узлами, определить маршруты следования данных, проверить работоспособность и оценить загруженность каналов передачи данных.

3.1.1. Эхо-запрос (Ping)

Инструмент «Эхо-запрос» используется для проверки связности канала между узлами сети.

В процессе тестирования сетевому узлу посылаются запросы и фиксируются поступающие ответы. Эта процедура основывается на IP- и ICMP-протоколах пересылки дейтаграмм и позволяет проверить работоспособность каналов передачи данных и промежуточных устройств. Для проведения анализа необходимо:

1. Подключить прибор к тестируемой сети с использованием одного порта в соответствии со схемой, приведённой ниже:

Рисунок 3.1. Вариант подключения 1

Примечание. Прибор также может быть подключён к сети с использованием двух портов (см. рис. 3.2). Настройки прибора для данного случая аналогичны описанным настройкам для одного порта.

Рисунок 3.2. Вариант подключения 2

2. Перейти в меню «Эхо-запрос». Нажать на клавишу **F3** («Настройки»):

Рисунок 3.3. Меню «Эхо-запрос»

3. Настроить параметры тестирования в меню «Настройки эхо-запроса»:

	A:1000	_	B:1000	_	20	14
	Настро	ойки	эхо-запр	юса		
Pa Bpe	IP ад змер пал Количес мя ожида Па	Іорт црес кета ство ания ауза	A 192.168 56 20 1000 1000	3.2.2		
Ĥ		В	Автоматичес	ки		

Рисунок 3.4. Меню «Настройки эхо-запроса»

- 4. Нажать на клавишу ^[51] («Старт»). Начнётся тестирование, в ходе которого на экран будут выведены строки, содержащие следующую информацию (слева направо):
 - размер ІСМР-пакета;
 - IP-адрес узла сети, ответившего на эхо-запрос;
 - порядковый номер пакета;
 - время между отправкой запроса и получением ответа.

Пример результатов тестирования представлен на рис 3.5.

A: B: 19:44
Эхо-запрос (85,142,45,242)
56 B from 85.142.45.242: n=1 time=5315 ms 56 B from 85.142.45.242: n=2 time=5396 ms 56 B from 85.142.45.242: n=3 time=5370 ms 56 B from 85.142.45.242: n=4 time=5381 ms 56 B from 85.142.45.242: n=5 time=5415 ms 56 B from 85.142.45.242: n=6 time=5388 ms 56 B from 85.142.45.242: n=7 time=5538 ms 56 B from 85.142.45.242: n=8 time=5534 ms 56 B from 85.142.45.242: n=9 time=5506 ms 56 B from 85.142.45.242: n=10 time=5612 ms 15 packets transmitted, 10 received, 5 packet loss min/avg/max: 5315/5438/5612 ms
Старт Статистика Настройки Сохр./Загр.

Рисунок 3.5. Результаты теста «Эхо-запрос»

По результатам тестирования формируется статистика:

A:100	—	E	3:		—	10	10
Статист	ика	э>	(0 –3	запро	сов		
Bpe	емя	01	гвет	га			
минимум		9	MC				
максимум	1	19	MC				
среднее	1	۱٥	мс				
отправлено	8 8						
потеряно	ŏ	((%				
повторные	ŏ						
таймаут	4						
Старт Статис	тика		Наст	ройки	Сох	(p./3a	агр₊

Рисунок 3.6. Статистика теста «Эхо-запрос»

В статистике отображается информация о минимальном, среднем, максимальном времени между отправкой запроса и получением ответа, а также о количестве переданных, принятых, потерянных и повторных (с одинаковым порядковым номером) пакетов. Значение в строке *таймаут* соответствует количеству пакетов, для которых время ответа на эхо-запрос было превышено.

3.1.2. Маршрут (Traceroute)

Инструмент «Маршрут»¹ используется для определения маршрутов следования данных в сетях на основе TCP/IP. В процессе тестирования указанному узлу сети отправляется последовательность дейтаграмм, при этом отображаются сведения о всех промежуточных маршрутизаторах, через которые прошли данные на пути к конечному узлу. Таким образом, инструмент «Маршрут» позволяет диагностировать доступность промежуточных пунктов на пути передачи потока данных в сети.

Для проведения анализа необходимо:

- 1. Подключить прибор к тестируемой сети в соответствии со схемой, приведённой на рис. 3.1.
- 2. Перейти в меню «Маршрут»:

A:100		-	B:		-	07	59
Маршрут	(192	.168.	.225.	190)	
Старт			Настр	ойки	Сохр	./3a	пр₊

Рисунок 3.7. Меню «Маршрут»

3. Настроить параметры тестирования в меню «Настройки маршрута»:

Рисунок 3.8. Меню «Настройки маршрута»

¹ В базовую конфигурацию не входит. Доступен при дополнительном заказе опции «ЕТІР».

- 4. Нажать на клавишу ^{**F1**} («Старт»). Начнётся тестирование, в ходе которого на экран будут выведены строки, содержащие следующую информацию (слева направо):
 - номер промежуточного узла;
 - IP-адрес промежуточного узла;
 - время ожидания ответа.

Если время ожидания ответа от промежуточного узла превысило таймаут, в строке результатов будет выведен значок «*».

Пример результатов тестирования представлен на рис. 3.9.

	A:1000	—	B:-		—	19	28
	Маршрут	(2	09.85	.229	.104)	
2	195,131,127,1	8 ms					
3	10.45.72.1	21 ms	\$				
4	195.131.241.4	18 ms	8				
5	195.131.252.4	20 ms	\$				
6	194.85.177.138	15 ms	3				
7	216,239,43,240	41 ms	\$				
8	209,85,250,189	58 ms	8				
9	66,249,95,132	62 ms	\$				
10	209.85.248.78	63 ms	3				
11	*						
12	209,85,252,83	68 ms	8				
13	209.85.243.81	72 ms	\$				
14	209,85,229,104	71 ms	\$				
(Старт		Наст	ройки	Сохр	₊/3a	пр₊

Рисунок 3.9. Результаты теста «Маршрут»

3.1.3. DNS (DNS lookup)

DNS (Domain Name System — система доменных имён) — распределённая база данных, способная по запросу, содержащему доменное имя узла, сообщить его IP-адрес. Функция DNS lookup² (поиск на сервере имён) помогает обнаружить ошибки в работе NS-серверов.

Для проведения анализа необходимо:

- 1. Подключить прибор к тестируемой сети в соответствии со схемой, приведённой на рис. 3.1.
- 2. Перейти в меню «DNS» (см. рис. 3.10).
- 3. В пункте меню «Порт» указать порт для приёма и передачи данных.
- 4. В пункте меню «Узел» ввести доменное имя узла. Нажать 📁 («Старт»).
- 5. В пункте меню «IP» будет выведен IP-адрес узла. Если адрес определить не удалось, то отобразится нулевой IP-адрес (0.0.0.0).

² В базовую конфигурацию не входит. Доступна при дополнительном заказе опции «ЕТІР».

Пример результатов тестирования представлен на рис. 3.10.

Рисунок 3.10. Меню «DNS»

3.1.4. ТСР-клиент

Функция «TCP-клиент» позволяет установить TCP-соединение с удалённым узлом сети, принимать от него данные и передавать данные этому узлу.

Для установления соединения необходимо:

- 1. Подключить прибор к сети в соответствии со схемой, приведённой на рис. 3.1.
- 2. Настроить параметры соединения (меню «ТСР-клиент» ⇒ «Настройки» (^{F4})):
 - выбрать порт для приёма и передачи данных;
 - ввести доменное имя или IP-адрес узла;
 - ввести номер порта (наиболее часто используемые номера портов приведены в таблице 3.1).

Рисунок 3.11. Настройки теста «ТСР-клиент»

3. Открыть TCP-соединение, нажав на клавишу ^{F1} («Открыть»):

Рисунок 3.12. Пример успешного соединения с узлом

Пример успешного соединения представлен на рис. 3.12. В случае возникновения проблем при установлении соединения выводится сообщение об ошибке. Некоторые сообщения приведены в таблице 3.2.

Таблица 3.1. Номера портов протокола ТСР/ІР

Номер порта (протокол)	Описание				
21 (FTP)	протокол передачи файлов				
22 (SSH)	безопасный протокол для удалённого управления и передачи файлов				
23 (TELNET)	протокол для доступа к удалённому сетевому устройству				
25 (SMTP)	протокол передачи электронной почты				
80 (HTTP(WWW))	протокол, используемый веб-браузерами и веб- серверами для передачи файлов				
161 (SNMP)	протокол для управления сетевыми устройствами				

Таблица 3.2. Ошибки соединения

Сообщение	Описание
protocol not supported	протокол не поддерживается
can't assign requested address	невозможно назначить запрошенный адрес
network is down	сеть отключена
network is unreachable	сеть недоступна
network dropped connection on reset	утеряно соединение с сетью
software caused connection abort	программное обеспечение вызвало разрыв
	соединения
connection reset by peer	узел разорвал соединение
connection timed out	истекло время ожидания соединения
connection refused	отказ в соединении
host is down	узел не отвечает
no route to host	отсутствует маршрут до узла

3.2. Перехват ARP

Функция «Перехват ARP»³ позволяет отслеживать ARP-ответы, передающиеся в сети, и «перехватывать» содержащиеся в них IP- и MAC-адреса сетевых устройств. На основании полученных данных формируется список адресов.

Для проведения анализа необходимо:

- 1. Подключить прибор к тестируемой сети в соответствии со схемой, приведённой на рис. 3.1 или на рис. 3.2.
- 2. Перейти в меню «ARP монитор»:

	A:	-	B:		—	13:14
	Пере	ехват	ARP	(A)		
ARP-таб/	пица пуста					
						В

- 3. Нажать на клавишу ^{F4} для выбора порта (А или В).
- 4. Через некоторое время надпись «ARP-таблица пуста» исчезнет и на экран будут выводиться IP- и MAC-адреса сетевых устройств:

A:100) –	B:		-	00:09
Пе	ерехват	ARP	(A)		
192,168,222,100 192,168,222,156 192,168,222,8 192,168,222,7	00:17:9A: 00:23:54: 00:0E:A6: 00:13:D4:	06:1C:Fi 47:D1:Ci A2:5B:4I 90:98:5I	8 D F		
					В

Рисунок 3.14. Экран «ARP монитор»

Если какая-то из записей не обновится в течение одной минуты, то она будет удалена из списка.

³ В базовую конфигурацию не входит. Доступна при дополнительном заказе опции «ЕТІР».

3.3. Тест кабеля

Прибор позволяет провести диагностику медного кабеля типа «витая пара», измерив основные характеристики и определив его состояние и тип.

Для проведения тестирования необходимо:

- 1. Перейти в меню в меню «Инструменты» ⇒ «Тест кабеля».
- 2. Подключить к прибору тестируемый кабель/кабели через разъём/разъёмы RJ-45⁴.
- 3. Нажать на клавишу ^{F1} («Старт»). При этом, в случае подключения двух кабелей, будут одновременно протестированы оба интерфейса. С помощью клавиш ^{F2} («А») и ^{F3} («В») выбрать порт для просмотра результатов тестирования.

Для определения типа кабеля необходимо:

- 1. Перейти в меню «Инструменты» ⇒ «Тест кабеля».
- 2. Один конец тестируемого кабеля подключить к порту A(B) прибора, другой к порту B(A).
- 3. Нажать на клавишу 📕 («Старт»).
- 4. Сравнить результаты тестирования, отображённые в строке «Перекр.» для порта А и порта В, и значения, представленные в таблице 3.3.

🗖 🗋 A:1	- 00	B:		15:30
Пара Состояние Затух,дЕ Дист.,м Полярн, Перекр,	Тест к 1-2 норм. 1 MDI	абеля (/ 3-6 норм, і MDI -	A) 4–5 K.3. –1.9 17	7-8 ĸ.з. -2.7 16
Старт	Ĥ	В		

Рисунок 3.15. Меню «Тест кабеля»

⁴ Проведение теста возможно только при подключении к анализируемому кабелю с использованием разъёма RJ-45. SFP-модули для тестирования не применяются.

Скорость ⁵	Пара	Значение в строке «Перекр.» для порта А	Значение в строке «Перекр.» для порта В	Тип кабеля
	1-2 3-6 4-5 7-8	MDI MDI — —	MDI MDI — —	перекрёстный
	1-2 3-6 4-5 7-8	MDI-X MDI-X — —	MDI-X MDI-X —	перекрёстный
	1-2 3-6 4-5 7-8	MDI-X MDI-X — —	MDI MDI — —	прямой
10/100	1-2 3-6 4-5 7-8	MDI MDI -	MDI-X MDI-X — —	прямой
	1-2 3-6 4-5 7-8	MDI MDI MDI MDI	MDI MDI MDI MDI	перекрёстный
	1-2 3-6 4-5 7-8	MDI-X MDI-X MDI-X MDI-X	MDI-X MDI-X MDI-X MDI-X	перекрёстный
	1-2 3-6 4-5 7-8	MDI-X MDI-X MDI-X MDI-X	MDI MDI MDI MDI	прямой
1000	1-2 3-6 4-5 7-8	MDI MDI MDI MDI	MDI-X MDI-X MDI-X MDI-X	прямой

⁵ Скорость передачи данных для порта А и порта В (в Мбит/с) задаётся в меню «Параметры интерфейсов».

3.4. Шлейф

Функция «Шлейф» позволяет прибору менять местами содержимое полей принимаемых пакетов и отправлять изменённые кадры обратно отправителю на четырёх уровнях модели OSI. Используется для тестирования сетей по методике RFC 2544 и измерения BER.

3.4.1. Уровень шлейфа

Уровень шлейфа выбирается в зависимости от структуры тестируемой сети:

- L1 (физический уровень): источник данных и прибор соединены напрямую;
- L2 (канальный уровень): сеть содержит только коммутаторы;
- L3 (сетевой уровень): сеть содержит коммутаторы и маршрутизаторы;
- L4 (транспортный уровень): сеть содержит коммутаторы и маршрутизаторы, при тестировании необходимо выполнить настройку портов UDP/TCP.

Примечание. При включении шлейфа уровня L2, L3, L4 пакеты перенаправляются обратно только в случае, если MAC-адрес получателя равен MAC-адресу порта прибора.

3.4.2. Изменение содержимого полей пакетов

Прибор автоматически вносит изменения в принимаемый трафик:

- L1: без изменений;
- L2: меняются местами МАС-адреса отправителя и получателя;
- L3: меняются местами MAC-адреса и IP-адреса отправителя и получателя;
- L4: меняются местами MAC-адреса, IP-адреса и номера TCP/UDP-портов отправителя и получателя.

Примечание. IP-адреса меняются местами только в случае, если поле «EtherType» имеет значение «0x0800».

Примечание. Номера TCP/UDP-портов меняются местами только в случае, если поле «Protocol» в IP-заголовке имеет значение «6» (TCP) или «17» (UDP).

Примечание. Если входящий пакет содержит MPLS-метку, он будет перенаправлен без изменения её значения.

3.4.3. Правила обработки потоков данных

При включении шлейфа канального (L2), сетевого (L3) и транспортного (L4) уровней не перенаправляются:

- пакеты с неправильной контрольной суммой (FCS);
- пакеты с одинаковыми МАС-адресами отправителя и получателя;
- блоки данных протокола ОАМ (OAMPDU) и ARP-запросы;
- пакеты, размер которых меньше 64 байт или больше 9600 байт.

При включении шлейфа канального (L2), сетевого (L3) и транспортного (L4) уровней не перенаправляются и поступают на центральный процессор (ЦП) для последующей обработки сообщения следующих протоколов:

Таблица 3.4. Протоколы, сообщения которых обрабатываются ЦП

Протокол	Условие отправки на ЦП
ICMP	поле «Protocol» в IP-заголовке имеет значение «1»
DHCP	номер UDP-порта получателя «67» или «68»
DNS	номер ТСР- или UDP-порта получателя «53»
ARP	поле «EtherType» имеет значение «0x0806»
OAM	МАС-адрес получателя «01:80:c2:00:00:02»
SSH	номер ТСР-порта получателя «22»
PTP, layer 2	поле «EtherType» имеет значение «0x88F7»
PTP, layer 4	номер UDP-порта получателя «319» или «320»
Telnet	номер ТСР-порта получателя «23»
ET-discovery	номер UDP-порта получателя «32792»
TWAMP-control	номер ТСР-порта получателя «862»
NTP	номер UDP-порта получателя «123»

Примечание. На ЦП поступают только пакеты, предназначенные порту прибора, на котором они были получены. К таким пакетам относятся те, у которых MAC-адрес получателя широковещательный, групповой или равен MAC-адресу порта прибора.

3.4.4. Статистика

При включении шлейфа автоматически запускается сбор статистики:

- L1: по принимаемому трафику;
- L2, L3, L4: по принимаемому и передаваемому трафику.

3.4.5. ЕТ-обнаружение

Функция «ЕТ-обнаружение» позволяет включить шлейф канального (L2), сетевого (L3) или транспортного (L4) уровня на удалённом анализаторе Беркут-ЕТ или устройстве образования шлейфа Беркут-ЕТL.

Рисунок 3.16. Схема тестирования

Шлейф можно включать последовательно на нескольких приборах Беркут-ЕТ и/или Беркут-ETL, находящихся как в разных, так и в одной подсети.

Для получения данных об удалённом приборе и включения шлейфа следует:

- 1. Подключить прибор Беркут-ЕТ к сети.
- 2. Перейти в меню «ЕТ-обнаружение»:

Рисунок 3.17. Меню «ЕТ-обнаружение»

- 3. Выбрать порт, с которого будет осуществляться передача данных.
- 4. В поле «IP» ввести IP-адрес удалённого устройства.
- 5. Нажать на клавишу ^{F4} («Обнаружение»).

В случае успешного обнаружения устройства на экран будут выведены его IP-адрес, имя и MAC-адрес (см. рис. 3.18). Пункт меню «Шлейф» станет доступным для редактирования.

	A:100	_	B:	-	08:18	
	ЕТ-обнаружение					
	Порт А IP 192.168.222.173 Шлейф З					
IP 192.168.222.173 Имя MX-100 MAC 00:18:63:00:04:1B						
Вык.	Выкл 2 3 4					

Рисунок 3.18. Пример выполнения ЕТ-обнаружения

Уровень шлейфа выбирается кнопками:

- •••• выключение режима «Шлейф»;
- F2 включение шлейфа канального уровня;
- F3 включение шлейфа сетевого уровня;
- F4 включение шлейфа транспортного уровня.

Примечание. Передача данных осуществляется по протоколу UDP. Порт получателя — 32 792. Порт отправителя — 32 793.

3.4.6. OAM

Важной задачей поставщиков услуг связи является обеспечение высокого уровня администрирования и технического обслуживания Ethernet-сетей. Для этих целей был разработан стандарт IEEE 802.3ah [6] (известный также как «Ethernet in the First Mile (EFM) OAM» — «Ethernet OAM на «первой миле»).

OAM (Operations, Administration, and Maintenance — эксплуатация, администрирование и обслуживание) — протокол мониторинга состояния канала, функционирует на канальном уровне модели OSI. Для передачи информации между Ethernet-устройствами используются блоки данных протокола — OAMPDU.

Важной функцией протокола ОАМ является возможность включения режима «Шлейф» на удалённом приборе.

Для установления соединения между прибором и удалённым устройством по протоколу ОАМ и для включения режима «Шлейф» необходимо:

1. *Непосредственно* соединить локальный прибор и удалённое устройство⁶ в соответствии со схемой, приведённой ниже.

Рисунок 3.19. Схема тестирования

2. На удалённом приборе разрешить работу протокола ОАМ в активном или пассивном режиме.

На локальном приборе:

- 3. Перейти в меню «ОАМ» (см. рис. 3.20).
- 4. В пункте меню «Порт» выбрать порт, к которому подсоединено удалённое устройство.
- 5. В пункте меню «Режим» выбрать активный режим работы протокола ОАМ.
- 6. Состояние обнаружения удалённого устройства в пункте меню «Обнаружение» должно принять значение «Send any».
- 7. Перейти в меню «Удалённый прибор». На экране должна отобразиться информация об удалённом устройстве.

⁶ На рис. 3.19 Беркут-ЕТ приведён в качестве примера удалённого устройства.

8. Нажать на клавишу ^(f) («LB up»). На удалённом устройстве будет включён режим «Шлейф» второго (L2) уровня (трафик будет перенаправляться без замены MAC-адресов).

Для выключения режима «Шлейф» необходимо нажать на клавишу 🎦 («LB down»).

Рисунок 3.20. Меню «ОАМ»

3.5. Транзит

В режиме «Транзит» прибор включается в разрыв соединения между двумя сетевыми устройствами. Трафик, приходящий на порт А (В) отправляется на порт В(А), пример подключения показан на рис. 3.21.

Рисунок 3.21. Пример подключения в режиме «Транзит»

При передаче данных с порта на порт осуществляется сбор статистических данных о проходящем трафике. Результаты доступны в меню «Статистика». При подсчёте статистики по уровням повреждённые пакеты не учитываются.

Если скорости передачи данных для порта A и для порта B различны, возможны потери при проведении тестирования. Потери произойдут в том случае, если передача ведётся с порта с большей скоростью на порт с меньшей.

Рисунок 3.22. Меню «Транзит»

3.6. LACP монитор

«LACP монитор» (англ. Link Aggregation Control Protocol) применяется для мониторинга состояния агрегированных каналов. Агрегирование каналов — технология объединения нескольких параллельных каналов передачи данных в один логический для увеличения пропускной способности и повышения надёжности.

С помощью двух приборов Беркут-ЕТ два канала объединяются в один и выполняется мониторинг его состояния: наличие соединения между приборами, количество каналов в группе, ошибки, статистика.

Для осуществления мониторинга порты A и B объединяются в один – «Bond», и между интерфейсами «Bond» двух приборов Беркут-ЕТ создаётся агрегированный канал.

Для проведения мониторинга следует:

1. Соединить порты А и В приборов Беркут-ЕТ по схеме на рис. 3.23.

Рисунок 3.23. Подключение приборов для проведения мониторинга

2. На каждом приборе перейти в меню «LACP монитор». В поле «Host MAC» должен отображаться MAC-адрес, назначенный прибору:

■) A:	- B: 11:40					
LACP монитор						
MII status Channel count Host MAC Partner MAC Current state Elapsed time	: 00:21:ce:28:1c:ba : : : 00:00:00					
Общая статистика LACPDU статистика Настройки						
Старт						

Рисунок 3.24. Меню «LACP монитор»

3. Для каждого прибора перейти в меню «LACP монитор» ⇒ «Настройки» и в поле «Partner MAC» указать MAC-адрес, отображаемый в пункте «Host MAC» прибора Беркут-ЕТ, расположенного на другом конце соединения (удалённого прибора).

Рисунок 3.25. Настройки теста «LACP монитор»

4. На каждом приборе перейти в меню «LACP монитор» и включить тест, нажав на клавишу ^(F1) («Старт»). В поле «Partner MAC» отобразится MAC-адрес удалённого прибора, определённый автоматически.

🗲 A:1000	LAC B:1000 LAC 09:50						
LACP монитор							
MII status : up Channel count : 2 Host MAC : 00:21:ce:28:25:b2 Partner MAC : 00:21:ce:28:19:aa Current state : ok Elapsed time : 00:01:47							
Общая статистика LACPDU статистика Настройки							
Стоп							

Рисунок 3.26. Меню «LACP монитор»

5. В поле «Current state» сообщение «wait connection» должно смениться на «ok».

Состояние канала оценивается с помощью поля «Current state»:

- «wait for connection» состояние ожидания соединения с удаленным прибором Беркут-ЕТ, возникает сразу после нажатия на клавишу ^{F1} («Старт») и сохраняется, пока не выполнятся все нижеперечисленные условия:
 - о в группе два канала;
 - о есть соединение между приборами;
 - MAC-адрес удалённого прибора совпадает с MAC-адресом, указанным в поле «Partner MAC» меню «LACP монитор» ⇒ «Настройки».
- «wrong partner MAC» соединение установлено, но MAC-адрес удалённого прибора не совпадает с MAC-адресом, указанным в поле «Partner MAC» меню «LACP монитор» ⇒ «Настройки».

- «ok» канал работает без ошибок: соединение успешно установлено и нет сбоев в течение всего времени мониторинга.
- «fail» канал не работает: не выполняется хотя бы одно из условий, перечисленных в пункте «wait for connection».
- «ok, fail occurred» канал работает с ошибками: соединение успешно установлено, но за время мониторинга наблюдались ошибки.

4. Измерения

4.1. Типовые схемы подключения

Для проведения тестирования прибор подключается к анализируемому устройству или сети в соответствии с одной из схем, приведённых ниже.

Рисунок 4.1. Типовая схема подключения 1

Рисунок 4.3. Типовая схема подключения 3

Рисунок 4.4. Типовая схема подключения 4

Рисунок 4.6. Типовая схема подключения 6

На схемах подключения введены следующие обозначения:

MAC s	МАС-адрес отправителя
MAC d	МАС-адрес получателя
MAC R	МАС-адрес шлюза
IP s	IP-адрес отправителя
IP d	IP-адрес получателя

В случае тестирования сетей, содержащих устройства, работающие на канальном уровне модели OSI⁷, прибор подключают в соответствии со схемой, приведённой на рис. 4.1. Генерируемый прибором трафик должен быть перенаправлен обратно посредством организации шлейфа. При этом во входящих пакетах меняются местами MAC-адреса отправителя и получателя, и трафик возвращается на исходный порт.

В случае тестирования сетей, содержащих устройства, работающие на сетевом уровне модели OSI⁸, прибор подключают в соответствии со схемой, приведённой на рис. 4.2. Генерируемый прибором трафик должен быть перенаправлен обратно посредством организации шлейфа. При этом во входящих пакетах меняются местами и MAC- и IP-адреса отправителя и получателя, и трафик возвращается на исходный порт.

В случае тестирования устройств/сетей с возможностью маршрутизации IP-трафика используются два порта (см. рис. 4.3, 4.4), а пакеты перенаправляются на другой порт прибора при помощи маршрутизатора или сетевого коммутатора.

В случае использования однонаправленного теста для анализа сетей, содержащих устройства, работающие на канальном уровне модели OSI⁷, прибор подключают в соответствии со схемой, приведённой на рис. 4.5. В случае тестирования устройств/сетей с возможностью маршрутизации IP-трафика используется схема 4.6.

⁷ Например, сетевой коммутатор (switch).

⁸ Например, маршрутизатор (router).

4.2. Варианты выполнения тестирования

4.2.1. Однонаправленное тестирование

Однонаправленное тестирование используется для получения односторонних результатов при проведении анализа по методике RFC 2544, теста «BERT», «Y.1564» и «Приказ 870».

Для получения более точных результатов при анализе задержки по методике RFC 2544, а также при тестировании в соответствии с рекомендацией Y.1564 и проведении теста «Приказ 870» необходимо использовать PTP-синхронизацию (опция ETPTP).

локальный Беркут-ЕТ

дистанционный Беркут-ЕТ

Рисунок 4.7. Схема однонаправленного теста

При проведении тестирования используется 2 прибора: локальный, на котором производится настройка параметров анализа, и дистанционный, находящийся на другом конце канала. Результаты тестирования отображаются на экране локального прибора.

4.2.1.1. Пример тестирования

Ниже рассматривается пример использования однонаправленного тестирования для проведения анализа по рекомендации «Y.1564». Для тестов «BERT», «RFC 2544», «Приказ 870» порядок действий аналогичен.

На рис. 4.8 приведена типовая схема подключения приборов к тестируемой сети с использованием порта А. Для порта В схема подключения будет аналогичной.

Рисунок 4.8. Типовая схема подключения

На схеме введены следующие обозначения:

МАС 1 — МАС-адрес порта А локального прибора;

IP 1 — IP-адрес локального прибора;

МАС R1 — МАС-адрес шлюза, ближайшего к локальному прибору;

МАС RN — МАС-адрес шлюза, ближайшего к дистанционному прибору;

МАС 2 — МАС-адрес порта А дистанционного прибора;

IP 2 — IP-адрес дистанционного прибора.

Для измерения параметров канала связи в направлении от локального прибора к дистанционному необходимо:

- Убедиться, что на локальном и дистанционном приборах возможно использование однонаправленного теста: в меню «Беркут-ЕТ. Настройки» ⇒ «Установки прибора» ⇒ «Опции» в списке опций должна присутствовать опция «ЕТРТР».
- 2. Подключить локальный и дистанционный прибор по схеме, представленной на рис. 4.8.
- 3. На локальном и на дистанционном приборе перейти в меню «Беркут-ЕТ. Настройки» ⇒ «Параметры сети». Выбрать:

Порт – А

Одним из приведённых ниже способов установить IP-адрес локального прибора (IP 1) и IP-адрес дистанционного прибора (IP 2):

- ввести IP-адрес вручную (при этом пункт меню «DHCP» должен находиться в состоянии «Выкл»);
- получить IP-адрес по протоколу DHCP, выбрав пункт меню «DHCP» и нажав на клавишу ^{F2} («Вкл»): полученный адрес будет корректным, если отобразится в пункте меню «IP-адрес» по истечении не более чем 1-2 секунд.
- 4. На локальном и на дистанционном приборе перейти в меню «Беркут-ЕТ. Настройки» ⇒ «Синхронизация времени» и выбрать порт А в качестве РТР-порта.

Примечание. Для тестов «BERT» и «RFC 2544» (пропускная способность, потери кадров, предельная нагрузка) выполнять данный пункт не требуется.

5. На локальном приборе перейти в меню «Y.1564» ⇒ «Настройки» ⇒ «Топология тестов» (см. рис. 4.9). Выбрать:

Порт передачи — А Порт приёма — Дистанционный Дист. IP — IP 2

	A:1000	—	B:	—	06:52		
	Топология тестов						
По	рт переда Порт приё	чи ма	А Дистанци	онн	ый		
	Дист.	IP	172.16.3	.14	3		
Ĥ	В		Дистанционный				

Рисунок 4.9. Экран «Топология тестов»

6. На локальном приборе перейти в меню «Беркут-ЕТ. Измерения» ⇒ «Y.1564» ⇒ «Настройки» ⇒ «Настройки сервисов» ⇒ «Заголовок» (см. рис. 4.10). Выбрать:

```
МАС Отпр. - МАС 1
МАС Получ. - МАС R1
IP Отпр. - IP 1
IP Получ. - IP 2
```

Примечание. Для получения MAC-адреса шлюза необходимо выполнить ARP-запрос: перейти к пункту меню «MAC Получ.» и нажать на клавишу ^{F3}.

	A:1000	_	B:		_	06	55	
	2050.0000							
	MAC OTO	2	00+2	1 • CE	•08	• OF -	• 69	
	MAC Dogu	v. u	00.2	1.91	÷Řň	•10	.70	
	ТР Отп	n.	172	16.2	10	6	••• •	
	ТР Поли	м.	172	16.3	14	3		
	1	••			• - •	-		
	Поп	олн	ителы	ю				
	VLAN	Вын	ហ					
	MPLS T	Х						
	MPLS RX							
	IP	ToS	5 0000b;	prece	dence	9 Q		
	UUP 60000/50000							
Ĥ	В							

Рисунок 4.10. Экран «Заголовок»

 На локальном приборе в соответствии с указаниями раздела 4.4 выполнить необходимые настройки теста «Y.1564». Затем перейти в меню «Беркут-ЕТ. Измерения» ⇒ «Y.1564» и нажать на клавишу ^{F1} («Старт»).

Примечание. После нажатия на клавишу «Старт» на экране локального прибора могут появиться следующие сообщения:

– «Идёт подключение к дист. порту ...» — возникает сразу после запуска теста.

- «Дистанционный прибор недоступен» возникает в случае, если не получилось установить соединение с дистанционным прибором.
- «Потеряно соединение» возникает в случае, если дистанционный прибор после установления соединения перестал отвечать на запросы.
- «Дистанционный прибор занят» возникает, когда на дистанционном приборе уже проводится какой-либо тест.
- «Дист. BERT 1-го уровня невозможен» возникает при попытке провести тест «BERT» первого уровня.

Примечание. На экране дистанционного прибора во время тестирования отображается сообщение «Выполняется дистанционный тест».

Для измерения параметров канала связи в направлении от дистанционного прибора к локальному необходимо:

- Убедиться, что на локальном и дистанционном приборах возможно использование однонаправленного теста: в меню «Беркут-ЕТ. Настройки» ⇒ «Установки прибора» ⇒ «Опции» в списке опций должна присутствовать опция «ЕТРТР».
- 2. Подключить локальный Беркут-ЕТ и дистанционный Беркут-ЕТ по схеме, представленной на рис. 4.8.
- 3. На локальном и на дистанционном приборе перейти в меню «Беркут-ЕТ. Настройки» ⇒ «Параметры сети». Выбрать:

Порт – А

Одним из приведённых ниже способов установить IP-адрес локального прибора (IP 1) и IP-адрес дистанционного прибора (IP 2):

- ввести IP-адрес вручную (при этом пункт меню «DHCP» должен находиться в состоянии «Выкл»);
- получить IP-адрес по протоколу DHCP, выбрав пункт меню «DHCP» и нажав на клавишу
 («Вкл»): полученный адрес будет корректным, если отобразится в пункте меню «IP-адрес» по истечении не более чем 1-2 секунд.
- 4. На локальном и на дистанционном приборе перейти в меню «Беркут-ЕТ. Настройки» ⇒ «Синхронизация времени» и выбрать порт А в качестве РТР-порта.

Примечание. Для тестов «BERT» и «RFC 2544» (пропускная способность, потери кадров, предельная нагрузка) выполнять данный пункт не требуется.

5. На локальном приборе перейти в меню «Y.1564» ⇒ «Настройки» ⇒ «Топология тестов» (см. рис. 4.11). Выбрать:

```
Порт передачи - Дистанционный
Порт приёма - А
Дист. IP - IP 2
```


Рисунок 4.11. Экран «Топология тестов»

6. На локальном приборе перейти в меню «Беркут-ЕТ. Измерения» ⇒ «Y.1564» ⇒ «Настройки» ⇒ «Настройки сервисов» ⇒ «Заголовок» (см. рис. 4.12). Выбрать:

МАС Отпр. - МАС 2

- MAC Получ. MAC RN
- IP Отпр. IP 2
- IP Получ. IP 1

	A:1000	-	B:	-	07 57	
	3	аго Пот	ловок ок 1			
	МАС Отпр. 00:21:CE:08:0E:CA МАС Получ. 00:21:91:08:00:02 IP Отпр. 172.16.3.143 IP Получ. 172.16.2.106					
	Доп VLAN MPLS T MPLS R IP UDP	олн Вын Х Х То 600	ительно «л 6 0000b; pred 000/50000	cedence	e 0	
Ĥ	В					

Рисунок 4.12. Экран «Заголовок»

 На локальном приборе в соответствии с указаниями раздела 4.4 выполнить необходимые настройки теста «Y.1564». Затем перейти в меню «Беркут-ЕТ. Измерения» ⇒ «Y.1564» и нажать на клавишу ^{F1} («Старт»).

Примечание. После нажатия на клавишу «Старт» на экране локального и дистанционного прибора появятся сообщения, аналогичные перечисленным на с. 30.

4.2.2. Двунаправленный тест со шлейфом

Тестирование с использованием шлейфа позволяет получить двусторонние результаты при проведении анализа по методике RFC 2544, теста «BERT», «Y.1564» и «Приказ 870».

Рисунок 4.13. Схема двунаправленного теста

При проведении тестирования используется 2 прибора: локальный, на котором производится настройка параметров анализа, и дистанционный, находящийся на другом конце канала. Результаты тестирования отображаются на экране локального прибора.

4.2.2.1. Пример тестирования

Ниже рассмотрен пример тестирования с использованием шлейфа для проведения теста «BERT». Для тестов «RFC 2544», «Y.1564», «Приказ 870» порядок действий аналогичен.

На рис. 4.14 представлена типовая схема подключения приборов к тестируемой сети.

Рисунок 4.14. Типовая схема подключения

На схеме введены следующие обозначения:

- МАС 1 МАС-адрес порта А локального прибора;
- IP 1 IP-адрес локального прибора;
- MAC R1 MAC-адрес шлюза, ближайшего к локальному прибору;
- MAC RN MAC-адрес шлюза, ближайшего к дистанционному прибору;

- МАС 2 МАС-адрес порта А дистанционного прибора;
- IP 2 IP-адрес дистанционного прибора.

Для проведения тестирования следует:

- 1. Подключить локальный и дистанционный Беркут-ЕТ по схеме, представленной на рис. 4.14.
- 2. На локальном и на дистанционном приборе перейти в меню «Беркут-ЕТ. Настройки» ⇒ «Параметры сети». Выбрать:

Порт – А

Одним из приведённых ниже способов установить IP-адрес локального прибора (IP 1) и IP-адрес дистанционного прибора (IP 2):

- ввести IP-адрес вручную, при этом пункт меню «DHCP» должен находиться в состоянии «Выкл»;
- получить IP-адрес по протоколу DHCP, выбрав пункт меню «DHCP» и нажав на клавишу («Вкл»).
- 3. На дистанционном приборе перейти в меню «Беркут-ЕТ. Инструменты» ⇒ «Шлейф» и в пункте меню «Тип» выбрать «З» (см. раздел 3.4).
- 4. На локальном приборе перейти в меню «BERT» ⇒ «Настройки» ⇒ «Топология тестов». Выбрать:

```
Порт передачи — А
Порт приёма — А
```

5. На локальном приборе перейти в меню «Беркут-ЕТ. Измерения» \Rightarrow «BERT» \Rightarrow «Настройки» \Rightarrow «Заголовок». Выбрать:

```
МАС Отпр. — МАС 1
МАС Получ. — МАС R1
IP Отпр. — IP 1
IP Получ. — IP 2
```

Для получения MAC-адреса шлюза необходимо выполнить ARP запрос: перейти к пункту меню «MAC Получ.» и нажать на клавишу **F3**.

6. На локальном приборе в соответствии с указаниями раздела 4.5 выполнить необходимые настройки теста «BERT». Затем перейти в меню «Беркут-ЕТ. Измерения» ⇒ «BERT» и нажать на клавишу ^{F1} («Старт»).

4.2.3. Тестовые конфигурации

Прибор Беркут-ЕТ позволяет проводить анализ с использованием тестовых конфигураций. Это означает, что на приборе можно настроить и провести два теста: параллельно (см. раздел 4.2.3.1) или одновременно (см. раздел 4.2.3.2).

Для переключения между тестовыми конфигурациями используются клавиши и и выбранной в данный момент конфигурации отображается в строке статуса⁹ справа от индикатора заряда батареи.

4.2.3.1. Запуск двух тестов параллельно

Прибор Беркут-ЕТ позволяет параллельно проводить два независимых теста: RFC-2544 и BERT. Результаты одного теста не влияют на проведение другого. Тесты можно выполнять в следующих комбинациях:

- BERT и BERT;
- RFC-2544 и RFC-2544;
- BERT и RFC-2544;
- RFC-2544 и BERT.

На рисунке 4.15 схематично представлен один из четырёх вариантов тестирования: с порта A на порт B проводится тест по методике RFC-2544, с порта B на порт A — BERT.

Рисунок 4.15. Схема параллельного тестирования: RFC-2544 и BERT

4.2.3.2. Запуск двух тестов одновременно

Прибор позволяет проводить анализ сетей с временным разделением каналов (например, WiMAX), *одновременно* выполняя два теста по методике RFC 2544 или два теста BERT. В таких сетях трафик, передаваемый в одном направлении, может влиять или полностью вытеснять трафик, передаваемый в другом направлении. Если запускать тесты не одновременно, одно из направлений не будет протестировано.

⁹ Подробная информация представлена в брошюре «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по структуре меню».

При одновременном запуске тестов проверяются оба направления, с учетом влияния друг на друга. Это позволяет оценить потери пакетов, пропускную способность или задержку в направлении A(B)⇒B(A) при одновременной нагрузке направления B(A)⇒A(B).

Рисунок 4.16. Схема двунаправленного теста RFC 2544

Особенности тестирования:

- при запуске теста в одной из конфигураций, одновременно запускается тест во второй конфигурации;
- если в одной из конфигураций тест не прошёл, а во второй прошёл, то попытка считается неудачной.

4.3. Методика RFC 2544

Методика RFC 2544 [1] определяет набор тестов, которые используются при оценке важнейших параметров сетевых устройств и проверке соответствия предоставляемых услуг характеристикам, которые оговариваются в SLA между операторами связи и клиентами.

Прибор позволяет проводить четыре стандартных теста согласно рекомендациям RFC 2544: анализ пропускной способности, задержки, уровня потерь кадров и предельной нагрузки.

4.3.1. Анализ пропускной способности

Рисунок 4.17. Анализ пропускной способности

Примечание. Анализ пропускной способности проводится с целью определения максимально возможной скорости коммутации для сетевых элементов в транспортных сетях Ethernet.

Пропускная способность — максимальная скорость передачи данных, на которой количество кадров¹⁰, прошедших через DUT, равно количеству кадров, отправленных ему с тестирующего оборудования. При анализе пропускной способности используется метод бинарного поиска.

Для определения пропускной способности некоторое количество пакетов с заданной скоростью передаётся на вход DUT (рис. 4.17). Затем подсчитывается количество пакетов, пришедших с выходного порта DUT. Если оно оказывается равным количеству отправленных пакетов, то тест завершается, так как окончился успешно на заданной пользователем скорости.

Если количество принятых пакетов оказывается меньше, чем количество переданных, то начинается поиск максимально возможной скорости, на которой отсутствуют потери: текущая скорость уменьшается вдвое, и тест повторяется. Если в ходе нового теста потерь нет, скорость увеличивается на половину, согласно алгоритму бинарного поиска. Если потери были — скорость уменьшается вдвое. После изменения скорости тест повторяется. Измерения выполняются до тех пор, пока не будет найдено значение, близкое к значению действительной пропускной способности с точностью, указанной в настройках теста.

¹⁰ Термины кадр и пакет в описаниях тестов являются синонимами.

Рисунок 4.18. Анализ задержки

Примечание. Анализ задержки позволяет оценить время, которое необходимо кадру для прохождения от источника к получателю и обратно. Изменение величины задержки может приводить к проблемам в работе сервисов реального времени.

При анализе задержки для каждого размера пакета на заданной (или полученной в результате теста «Пропускная способность») скорости отправляется поток кадров, адресованных получателю. В пакеты вставляются метки определенного формата. На передающей стороне записывается значение Та — время, к которому пакет с меткой был полностью передан. На приёмной стороне определяется метка и записывается значение Tb — время приёма пакета с меткой. Задержка представляет собой разницу значений этих меток: Tb - Та. По результатам анализа вычисляется средняя задержка.

4.3.3. Анализ уровня потерь кадров

Х,%, Х,% - потери при соответствующей нагрузке

Рисунок 4.19. Анализ уровня потерь кадров

Примечание. Анализ уровня потерь кадров необходим для проверки способности сети поддерживать приложения, которые работают в реальном времени (без возможности повторной передачи), так как большой процент потерь кадров приведёт к ухудшению качества сервиса. Данный тест позволяет рассчитать процент кадров, которые не были переданы сетевым элементом при постоянной нагрузке из-за недостатка аппаратных ресурсов.

При анализе уровня потерь кадров на вход DUT на заданной начальной скорости посылается некоторое количество кадров (input count) и подсчитывается количество пакетов, пришедших с выходного порта DUT (output count). Испытания повторяют, уменьшая скорость тестового потока до заданного конечного значения, пока в двух попытках подряд не будет потеряно ни одного кадра. Уровень потерь кадров рассчитывается по формуле:

4.3.4. Анализ предельной нагрузки

Рисунок 4.20. Анализ предельной нагрузки

Примечание. Анализ предельной нагрузки позволяет оценить время, в течение которого устройство справляется с максимальной нагрузкой.

При анализе предельной нагрузки на вход DUT отсылаются кадры с заданной (или полученной в результате теста «Пропускная способность») скоростью и подсчитывается количество пакетов с выхода DUT. Если оно оказывается равным количеству отправленных кадров, то тест заканчивается. Если же количество пакетов на выходе DUT меньше числа отправленных, то время уменьшается и тест повторяется.

4.4. Y.1564

Основной задачей при тестировании Ethernet-сетей является определение соответствия предоставляемых услуг (например, видео, телефонии, электронной почты, онлайн-игр и т.д.) характеристикам, которые оговариваются в соглашении об уровне обслуживания (SLA — Service Level Agreement) между операторами связи и клиентами. На первом месте стоят вопросы обеспечения гарантированного качества обслуживания (QoS — Quality of Service), которое характеризуется различными показателями (см. раздел 4.4.1). В настоящее время существует две основные методики для оценки этих параметров — RFC 2544 [1] и ITU-T Y.1564 [5] (сравнение методик приведено в разделе 4.4.2).

4.4.1. Показатели качества

Основные показатели качества предоставляемого сервиса¹¹ (SAC — Service Acceptance Criteria):

- 1. FTD (Frame Transfer Delay) задержка распространения кадров.
- 2. FDV (Frame Delay Variation) отклонение задержки распространения кадров.
- 3. FLR (Frame Loss Ratio) уровень потерь кадров.
- 4. CIR (Committed Information Rate) гарантированная пропускная способность для сервиса.
- 5. EIR (Excess Information Rate) максимально допустимое превышение CIR.
- 6. М-фактор максимально допустимое превышение величины CIR+EIR.

4.4.2. Сравнение RFC 2544 и ITU-Т Y.1564

Методика RFC 2544 была создана для тестирования максимальной производительности сетевого оборудования и подходит для оценки этого параметра в случае отдельного канала или устройства. Но с появлением в каналах различных служб, работающих одновременно, выявился ряд недостатков методики.

Рекомендация ITU-Т Y.1564 учитывает эти недостатки и ориентирована на тестирование мультисервисных сетей, позволяя провести быструю оценку соответствия сети требованиям SLA.

Параметр	RFC 2544	ITU-T Y.1564
Измерение FTD	\checkmark	\checkmark
Измерение FDV ¹²	_	\checkmark
Измерение FLR		\checkmark
Анализ одновременной	—	\checkmark
работы нескольких служб		

¹¹ Термины «услуга», «служба» и «сервис» в данном описании являются синонимами.

¹² Величина FDV является ключевым параметром для VoIP/IPTV и используется при настройке буферизации трафика.

Параметр	RFC 2544	ITU-T Y.1564
Время тестирования	Для проверки	Для проведения теста
	соответствия SLA	конфигурации одной
	требуется провести	услуги требуется не более
	последовательность	6 минут. Длительность
	повторяющихся тестов.	теста производительности
	В связи с этим	может быть задана
	тестирование может	от нескольких секунд
	занять продолжительное	до нескольких суток.
	время.	

Таким образом, тестирование по рекомендации Y.1564 позволяет однозначно определить соответствие канала параметрам, заявленным в SLA, а также существенно сократить временные затраты на анализ за счёт одновременной оценки нескольких служб.

4.4.3. Тесты конфигурации

Тесты конфигурации состоят из трёх независимых тестов — CIR, EIR и Traffic Policing. С их помощью каждый сервис проверяется на соответствие заданным параметрам SAC, а также оценивается, остаётся ли пропускная способность в установленных пределах при увеличении нагрузки. Цель — убедиться в том, что настройки сети позволяют работать каждому сервису отдельно ОТ других служб С заявленной данных тестов сервисы производительностью. При проведении проверяются по очереди, для оценки одновременной работы применяется тест производительности (см. раздел 4.4.4).

4.4.3.1. Тест CIR

Тест CIR используется для проверки того, что при передаче данных с нагрузкой на уровне CIR показатели качества находятся в пределах, установленных SLA. В ходе данного теста измеряются основные показатели качества каждого сервиса (FTD, FDV, FLR), после чего эти значения сравниваются с заданными параметрами SAC.

Прибор позволяет задавать количество шагов для проведения тестирования: 1 шаг — тест CIR будет проведён при 100 % нагрузке; 2 шага — тест будет проведён в два этапа: 50 и 100 % от заданной нагрузки; 3 шага — тест будет проведён в три этапа: 50, 75 и 100 % от заданной нагрузки; 4 шага — тест будет проведён в четыре этапа: 25, 50, 75 и 100 % от заданной нагрузки.

4.4.3.2. Тест EIR

Тест EIR служит для проверки того, что при передаче данных с нагрузкой на уровне CIR+EIR результирующая пропускная способность для каждого сервиса не превышает допустимое значение и находится в пределах от CIR (с учётом заданного уровня потерь кадров) до CIR+EIR: CIR×(1-FLR) \leq IR \leq CIR+EIR. Величина потерь кадров (FLR) устанавливается пользователем.

Примечание. Режим «colour-aware» (возможность помечать цветом передаваемые кадры) не поддерживается.

4.4.3.3. Tect Traffic Policing

Тест Traffic Policing используется для проверки того, что при передаче данных с нагрузкой, превышающей разрешённую для сервиса, сеть будет ограничивать его полосу пропускания. Нагрузка для этого теста, устанавливаемая пользователем, должна превышать уровень CIR+EIR.

4.4.4. Тест производительности

Тест производительности используется для оценки одновременной работы всех сервисов. При проведении теста выполняется передача данных для всех служб одновременно с нагрузкой на уровне CIR и проверяются значения показателей качества для каждого сервиса. Единственной настройкой теста является его длительность, которая может составлять от нескольких минут до 4-х дней.

4.4.5. М-фактор

При проведении теста Traffic Policing в результате буферизации в некоторые моменты времени на приёме оказывается больше данных, чем отведено для сервиса. Это является особенностью, а не сбоем в работе сети. Чтобы учесть эту особенность, в ITU-T Y.1564 используется М-фактор — максимально допустимое превышение величины CIR+EIR (см. ITU-T Y.1564 п. С.2 разд. 8.1.2).

4.4.6. Алгоритм измерения FTD

Для измерения задержки распространения кадров (FTD) выполняются следующие действия:

- 1. На передающей стороне в каждый пакет вставляется временная метка (Та).
- 2. На приёмной стороне записывается значение времени приёма пакета с меткой (Tb).
- 3. Вычисляется задержка прохождения пакета в сети: Тb Та.

Примечание. Приёмником и передатчиком должен быть один и тот же прибор или два прибора, синхронизированных по протоколу РТР.

4. Фиксируются три значения задержки — минимальное (FTD_min), среднее (FTD_avg) и максимальное (FTD_max). Среднее значение задержки вычисляется как сумма задержек для всех принятых пакетов, поделенная на количество принятых пакетов.

Эти значения отображаются в результатах теста производительности для каждого сервиса. Для сводного теста производительности и тестов конфигурации выводятся средние значения.

4.4.7. Алгоритм измерения FDV

Отклонение задержки распространения кадров (FDV) в соответствии с рекомендацией ITU-T Y.1563 [7] измеряется по формуле: FDV = FTD – FTD_min.

Например, если были измерены значения задержки распространения кадров: FTD_min = 1.5, FTD_avg = 2.5, FTD_max = 5.5, то значения FDV будут следующими: FDV min = 0, FDV avg = 1.0, FDV max = 4.0.

Эти величины отображаются в результатах теста производительности для каждого сервиса. Для сводного теста производительности и тестов конфигурации выводятся средние значения.

4.5. BERT

ВЕRТ (Bit Error Rate Test) — тест, позволяющий определить основной битовый показатель качества канала – «bit error rate» (коэффициент битовых ошибок), т.е. отношение числа ошибочных бит к общему количеству переданных бит. Известная на приёмном и передающем конце бинарная последовательность помещается в Ethernet-кадр, который передаётся в физическую среду. На приёмном конце последовательность сравнивается с исходной, и вычисляется коэффициент битовых ошибок. Для подключения к TDM-сети используется конвертер интерфейсов, который осуществляет преобразование трафика пакетной сети (Ethernet) в трафик, передаваемый в TDM-сетях.

Тестирование может быть реализовано на четырёх уровнях модели OSI:

1. На физическом уровне данные отправляются частями с определённым межкадровым интервалом (IFG — Interframe Gap). В этом случае тестирование проводится с порта A (B) на порт B (A) (см. рис. 4.25) или используется функция «Шлейф» (см. рис. 4.26).

Рисунок 4.21. Кадр физического уровня

 На канальном уровне к данным добавляется Ethernet-заголовок, что позволяет передать тестовые пакеты через сеть, которая содержит устройства, работающие на втором уровне модели OSI — например, сетевой коммутатор (switch). Способы подключения к тестируемой сети показаны на рис. 4.27, 4.28, 4.29.

MAC	Тестовая	
заголовок	последовательность	сумма

Рисунок	4.22. Кадр	канального уровня
---------	------------	-------------------

3. На сетевом уровне данные помещаются в IP-пакет, а затем — в Ethernet-кадр. Это позволяет передать тестовые пакеты через сеть, которая содержит устройства, работающие на канальном и сетевом уровнях — например, сетевой коммутатор, маршрутизатор (router). Способы подключения прибора к тестируемой сети показаны на рис. 4.27, 4.28, 4.29.

МАС	IР	Тестовая	Контр.
заголовок	заголовок	последовательность	сумма

4. На транспортном уровне формируется Ethernet-кадр, содержащий IP- и UDPзаголовок, что позволяет передать тестовую последовательность с использованием транспортных протоколов. Способы подключения прибора к тестируемой сети показаны на рис. 4.27, 4.28, 4.29.

MAC	IP	UDP	Тестовая	Контр.	
заголовок	заголовок	заголовок	последовательность	сумма	

Рисунок 4.24. Кадр транспортного уровня

Для тестирования можно использовать любую из последовательностей, перечисленных в таблице 4.1, а также пользовательскую или CRTP.

Таблица 4.1. Тестовые последовательности, соответствующие рекомендации ITU-T 0.150 [8]

Тип последовательности	Рекомендуемое применение				
2e11-1	Для определения ошибок и джиттера (при передаче				
	данных по каналу связи со скоростью 64 кбит/с				
	и 64×N кбит/с, где N — целое число).				
2e15-1	Для определения ошибок и джиттера (при передаче				
	данных по линии связи со скоростью 1544, 2048, 6312,				
	8448, 32064 и 44736 кбит/с).				
2e20-1	Для определения ошибок (при передаче по каналу				
	связи со скоростью не более 71 кбит/с).				
2e23-1	Для определения ошибок и джиттера (при передаче				
	данных по линии связи со скоростью 34368				
	и 139264 кбит/с).				
2e29-1, 2e31-1	Для определения ошибок при передаче данных				
	на высоких скоростях (более 139264 кбит/с).				

4.5.1. Варианты подключения

Рисунок 4.25. Тестирование на физическом уровне (вариант 1)

Рисунок 4.26. Тестирование на физическом уровне (вариант 2)

пакет с ошиокои в тестовои последовательности

Рисунок 4.27. Тестирование на канальном/сетевом уровне (вариант 1)

— пакет с ошибкой в тестовой последовательности

— пакет с ошибкой в тестовой последовательности

Рисунок 4.29. Тестирование на канальном/сетевом уровне (вариант 3)

4.6. Пакетный джиттер

Важной задачей при тестировании Ethernet-сетей является определение пакетного джиттера¹³. В соответствии с методикой RFC 4689 [9], пакетный джиттер — это абсолютная разность задержек распространения двух последовательно принятых пакетов, принадлежащих одному потоку данных. Этот параметр используется для оценки возможности сети передавать чувствительный к задержкам трафик, такой, как видео или речь.

4.6.1. Тестовый поток

Функция генерации тестового потока применяется при измерении пакетного джиттера. Существует возможность генерации тестового потока и измерения пакетного джиттера на одном порту (рис. 4.30), а также генерации тестового потока на одном порту и измерения пакетного джиттера на другом (рис. 4.31), причём порт приёма может располагаться на удалённом приборе (рис. 4.32).

Рисунок 4.30. Измерение джиттера. Схема 1

Рисунок 4.31. Измерение джиттера. Схема 2

¹³ В базовую конфигурацию не входит. Доступно при дополнительном заказе опции «ЕТЈТ».

Рисунок 4.32. Измерение джиттера. Схема 3

4.7. Тестовые данные

Тест «Тестовые данные» позволяет измерить количество переданных и принятых данных, а также продолжительность сеанса передачи в соответствии с приказом Минкомсвязи России №277.

Для измерения количества переданных и принятых данных прибор подключается к тестируемому устройству и выполняется генерация заданного количества пакетов или байтов. Для анализа работы тестируемого устройства количество пакетов и байтов, зафиксированное прибором, сравнивается с показаниями тестируемого устройства.

Для измерения продолжительности сеанса передачи данных прибор подключается к тестируемому устройству и выполняется генерация данных в течение заданного времени. Для анализа работы тестируемого устройства заданная длительность генерации сравнивается с показаниями тестируемого устройства.

4.7.1. Типовая схема включения

Рисунок 4.33. Типовая схема подключения для проведения теста «Тестовые данные»

4.7.2. Порядок измерения количества переданных и принятых данных

- 1. Подключить прибор по схеме, представленной на рис. 4.33.
- 2. Убедиться, что в меню «Настройки» ⇒ «Установки прибора» ⇒ «Опции» в списке присутствует опция «ЕТDATA».
- 3. Перейти в меню «Измерения» ⇒ «Тестовые данные» ⇒ «Настройки».
- 4. В пункте меню «Порт приёма» указать порт для приёма данных от тестируемого устройства.
- 5. Перейти в меню «Тестовый поток».
- 6. В пункте меню «Порт передачи» выбрать порт для передачи данных на тестируемое устройство.
- 7. В пункте меню «Ограничение» выбрать «по байтам» или «по пакетам».
- 8. В пункте меню «Кол-во байт» или «Кол-во пакетов» задать необходимое количество байтов или пакетов для генерации.

9. Перейти в меню «Заголовок» и выполнить настройку заголовка.

10. Вернуться в меню «Тестовые данные» и нажать «Старт» (^{F1}).

4.7.3. Порядок измерения продолжительности сеанса передачи данных

- 1. Подключить прибор по схеме, представленной на рис. 4.33.
- 2. Убедиться, что в меню «Настройки» ⇒ «Установки прибора» ⇒ «Опции» в списке присутствует опция «ЕТДАТА».
- 3. Перейти в меню «Измерения» ⇒ «Тестовые данные» ⇒ «Настройки».
- 4. В пункте меню «Порт приёма» указать порт для приёма данных от тестируемого устройства.
- 5. Перейти в меню «Тестовый поток».
- 6. В пункте меню «Порт передачи» выбрать порт для передачи данных на тестируемое устройство.
- 7. В пункте меню «Ограничение» выбрать «по времени».
- 8. В пункте меню «Длительность» задать длительность генерации.
- 9. Перейти в меню «Заголовок» и выполнить настройку заголовка.
- 10. Вернуться в меню «Тестовые данные» и нажать «Старт» (^{F1}).

4.8. Тест времени

«Тест времени» позволяет измерить расхождение шкал времени в сетях операторов связи относительно национальной шкалы времени Российской Федерации UTC (SU) в соответствии с приказом Минкомсвязи России №277.

Результаты теста показывают, на сколько время на тестируемом сервере отличается от времени на опорном (эталонном) сервере.

В ходе теста определяются значения времени для опорного сервера («Ref») и тестируемого сервера («Test»). Для минимального, среднего и максимального значений вычисляется расхождение шкал времени («Diff») по формуле: «Diff=Test-Ref».

Проверку работы сервера можно выполнять по протоколу NTP (см. раздел 4.8.2) или PTP (см. раздел 4.8.3).

4.8.1. Типовые схемы включения

Diff=Test-Ref

Рисунок 4.35. Типовая схема подключения для режима РТР

4.8.2. Порядок измерения расхождения шкал времени в режиме NTP

- 1. Подключить прибор по схеме на рис. 4.34.
- 2. Убедиться, что в меню «Настройки» ⇒ «Установки прибора» ⇒ «Опции» в списке присутствует опция «ЕТТІМЕ».
- 3. Перейти в меню «Измерения» ⇒ «Тест времени» ⇒ «Настройки».
- 4. В пункте меню «Режим» выбрать «NTP».
- 5. В пункте меню «Длительность» задать время проведения теста.

- 6. Перейти в меню «Настройки NTP».
- 7. В пункте меню «Опорный» задать IP-адрес или доменное имя опорного сервера.
- 8. В пункте меню «Тестовый» указать IP-адрес или доменное имя сервера, для которого требуется измерить расхождение шкал времени относительно опорного сервера.
- 9. Вернуться в меню «Тест времени» и нажать «Старт» (^{F1}).

4.8.3. Порядок измерения расхождения шкал времени в режиме РТР

- 1. Подключить прибор по схеме на рис. 4.35.
- 2. Убедиться, что в меню «Настройки» ⇒ «Установки прибора» ⇒ «Опции» в списке присутствует опция «ЕТТІМЕ».
- 3. Перейти в меню «Измерения» ⇒ «Тест времени» ⇒ «Настройки».
- 4. В пункте меню «Режим» выбрать «РТР».
- 5. В пункте меню «Длительность» задать время проведения теста.
- 6. Перейти в меню «Настройки РТР».
- 7. В пункте меню «Сервер» выбрать тип сервера (тестовый или опорный), к которому подключен порт, указанный в пункте меню «Порт».
- 8. В пункте меню «Порт» выбрать другой порт и задать для него тип сервера.
- 9. В пункте меню «Задержка» указать механизм определения задержки «E2E» или «P2P».
- 10. В пункте меню «Домен» задать номер РТР-домена в соответствии с IEEE 1588.
- 11. Вернуться в меню «Тест времени» и нажать «Старт» (^{F1}).

4.9. Нарушение обслуживания

Тест нарушения обслуживания (Service Disruption Test) позволяет определить длительность прерываний сервиса в секундах и пакетах, а также зафиксировать дату и время начала обрыва связи с сервисом.

Под сервисом понимается сетевое устройство с функцией перенаправления трафика: шлейф, зеркалирование, транзит с порта на порт. Под прерыванием – период времени, в течение которого сервис перестает выполнять функции перенаправления трафика.

4.9.1. Типовые схемы включения

Рисунок 4.36. Схемы включения с использованием одного прибора

Рисунок 4.37. Схема включения с использованием двух приборов

4.9.2. Проведение теста

Для проведения теста по одной из схем, представленных на рис. 4.36, следует:

1. Перейти в меню «Нарушение обслуживания» ⇒ «Настройки». В пункте меню «Тестовый поток» выбрать «Вкл» и выполнить настройку тестового потока в меню «Настройки потока».

Примечание. В пункте меню «Отправка» необходимо выбрать «Выкл»: генерация тестового потока начнётся автоматически при запуске теста «Нарушение обслуживания». Длительность генерации не имеет значения – будет использовано значение, указанное в настройках теста «Нарушение обслуживания».

- 2. Перейти в меню «Нарушение обслуживания» ⇒ «Настройки» и выполнить настройку теста.
- 3. Перейти в меню «Нарушение обслуживания» и нажать на клавишу ^[51] («Старт»).

	A:1000	—	B:1000	-	10:58
Нарушение обслуживания					
Max duration, us : 1 Min duration, us : 1 Avg duration, us : 1 Total duration, us: 87 PKTs : 128 INTs : 128 Unhandled INTs: 372 Elapsed time : 00:00:01 Настройки					
Ста	арт		Прерывания	Сохр	./Загр.

Рисунок 4.38. Пример результатов теста

При нажатии на клавишу ^{F3} («Прерывания») выполняется переход в меню, в котором доступны записи о первых 100 прерываниях: дата и время начала прерывания, длительность прерывания в мкс и пакетах.

A:10	000	-	B:1000	-	10:59
Нарушение обслуживания Прерывания # прерывания 99					
Started	:	07- 08:	03-2019 25:57.9	76687	669
Duration, PKTs	us: ;	1			
~<					>>

Рисунок 4.39. Меню «Прерывания»

Для проведения теста по схеме на рис. 4.37 следует:

- 1. Убедиться, что на обоих приборах Беркут-ЕТ установлены одинаковые версии программного обеспечения: меню «Беркут-ЕТ. Настройки» ⇒ «Установки прибора» ⇒ «Информация».
- 2. На приборе Беркут-ЕТ, который будет анализировать трафик, перейти в меню «Нарушение обслуживания» ⇒ «Настройки» и выполнить настройку теста. В пункте меню «Тестовый поток» выбрать «Выкл».
- 3. На приборе Беркут-ЕТ, который будет генерировать трафик, перейти в меню «Нарушение обслуживания» ⇒ «Настройки». В пункте меню «Тестовый поток» выбрать «Вкл» и выполнить настройку тестового потока в меню «Настройки потока». В пункте меню «Отправка» выбрать «Вкл».

Примечание. Длительность генерации тестового потока должна превышать длительность теста «Нарушение обслуживания».

4. На приборе Беркут-ЕТ, который будет анализировать трафик, перейти в меню «Нарушение обслуживания» и нажать на клавишу ^{F1} («Старт»).

4.10. Приказ №870

Приказ №870 Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации от 19.12.2019 (далее – «Приказ») содержит перечень измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и выполняемых при обеспечении целостности и устойчивости функционирования сети связи общего пользования, и обязательных метрологических требований к ним, в том числе показателей точности измерений.

В Приказе содержатся метрологические требования к следующим параметрам сетей передачи данных:

- средняя задержка передачи пакетов данных (PD Packet delay);
- вариация задержки передачи пакетов данных (PDV Packet delay Variation);
- коэффициент потерь пакетов данных (PL Packet Loss);
- пропускная способность канала передачи данных.

Тест «Приказ №870» является мультисервисным, он позволяет задать значения перечисленных параметров, соответствующие соглашению об уровне обслуживания (SLA), и измерить их реальную величину с точностью, удовлетворяющей требованиям Приказа. Измерения выполняются одновременно для всех сервисов.

Для проведения тестирования можно использовать типовые схемы подключения, представленные в разделе 3.4.5.

5. Методика проверки на соответствие приказу Минкомсвязи России №277

Данная методика определяет порядок проведения проверки прибора Беркут-ЕТ на соответствие приказу Минкомсвязи России №277 «Об утверждении Обязательных метрологических требований к измерениям, относящимся к сфере государственного регулирования обеспечения единства измерений, в части компетенции Министерства связи и массовых коммуникаций Российской Федерации». Версия программного обеспечения прибора Беркут-ЕТ должна быть не ниже 1.1.18.

- 1. Порядок проверки выполнения требований по количеству переданной (принятой) информации (данных):
 - 1.1. Подключить блок питания к разъёму питания и включить прибор Беркут-ЕТ.
 - 1.2. Подключить порты A, B и LAN Беркут-ЕТ к маршрутизатору (см. рис. 5.1).
 - 1.3. Убедиться, что соединение установлено индикатор «Link» портов A, B и LAN горит зелёным.
 - 1.4. Подключить прибор, с помощью которого выполняется проверка (далее по тексту проверяющий прибор), к маршрутизатору (см. рис. 5.1).
 - 1.5. Подключить персональный компьютер непосредственно к Беркут-ЕТ или к локальной сети, в которой находится Беркут-ЕТ.

Рисунок 5.1. Схема подключения приборов для проверки выполнения требований по количеству переданной (принятой) информации

Примечание. На рис. 5.1 приведена общая схема подключения Беркут-ЕТ без учета особенностей подключения проверяющего прибора.

1.6. Подключиться к Беркут-ЕТ по протоколу SSH под учётной записью «admin».

Примечание. Подробное описание дано в документе «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Краткое руководство по эксплуатации».

1.7. Сбросить статистику на портах А и В.

Примечание. Информация о командах приведена в документе «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удаленного управления».

- 1.8. Включить режим «Транзит».
- 1.9. На проверяющем приборе включить генерацию тестовых данных.
- 1.10. После завершения генерации просмотреть статистику на Беркут-ЕТ.
- 1.11. Сравнить количество пакетов и байтов, переданное проверяющим прибором, с количеством пакетов и байтов, зафиксированных Беркут-ЕТ.
- 1.12. При необходимости повторить процедуру генерации тестовых данных.
- 2. Порядок проверки выполнения требований по расхождению шкалы времени:
 - 2.1. Подключить блок питания к разъёму питания и включить прибор Беркут-ЕТ.
 - 2.2. Подключить порт A (B) и порт LAN Беркут-ЕТ к маршрутизатору (см. рис. 5.2).
 - 2.3. Убедиться, что соединение установлено индикатор «Link» портов А (В) и LAN горит зелёным.
 - 2.4. Подключить проверяющий прибор с установленным NTP-клиентом к маршрутизатору (см. рис. 5.2).
 - 2.5. Подключить ПК непосредственно к Беркут-ЕТ или к локальной сети, в которой находится Беркут-ЕТ.

Рисунок 5.2. Схема подключения приборов для проверки выполнения требований по расхождению шкалы времени

Примечание. На рис. 5.2 приведена общая схема подключения Беркут-ЕТ без учета особенностей подключения проверяющего прибора.

2.6. Подключиться к Беркут-ЕТ по протоколу SSH под учётной записью «user».

Примечание. Подробное описание дано в документе «Тестер-анализатор сетей Ethernet Беркут ЕТ. Краткое руководство по эксплуатации».

- 2.7. Перейти под учетную запись «root».
- 2.8. Настроить Беркут-ЕТ в качестве NTP-сервера.
- 2.9. Задать эталонный NTP-сервер.
- 2.10. Проверить подключение к сети, в которой находится эталонный NTP-сервер.
- 2.11. Оставить Беркут-ЕТ и проверяющий прибор подключенным к сети на 86 400 с (24 часа).
- 2.12. Каждый тестовый период проверяющий прибор определяет значение допускаемой погрешности измерения расхождения шкалы времени.
- 2.13. Убедиться, что значение допускаемой погрешности находится в пределах $\pm 0,3$ с.

6. Литература

- [1] RFC 2544, «Benchmarking Methodology for Network Interconnect Devices», S. Bradner and J. McQuaid, March 1999.
- [2] IEEE Std 802.1Q, IEEE Standard for Local and metropolitan area networks Virtual Bridged Local Area Networks.
- [3] RFC 791, Postel, J., «Internet Protocol», DARPA, September 1981.
- [4] RFC 1349, Almquist, P., «Type of Service in the Internet Protocol Suite», July 1992.
- [5] ITU-T Y.1564 (03/2011), «Ethernet service activation test methodology».
- [6] IEEE 802.3ah, «Ethernet in the First Mile Task Force».
- [7] ITU-T Y.1563 (01/2009), «Ethernet frame transfer and availability performance».
- [8] ITU-TO.150(05/96), «General requirements for instrumentation for performance measurements on digital transmission equipment».
- [9] RFC 4689, «Terminology for Benchmarking Network-layer Traffic Control Mechanisms», S. Poretsky, October 2006.